Cutouts are widely used in ships and offshore structures. Cutouts of big size are used mainly for inspection, passing pipes, and weight reduction. Some cutouts of small size may be used for various purposes, such as water hole in the web of stiffeners. The stiffeners with perforated web are the most commonly adopted structure members in the shipbuilding industry, and they are mainly fabricated by cutting and bending the frame to meet the requirements of desired design configuration. In ship production, the manufacture of the curved stiffener with holes is desirable to perforate first and then to bend the frame. This fabrication procedure is adopted for efficient production because of the layout of the production line. However, structural distortion and damage may occur during cold bending of the frames with perforated web, such as necking, wrinkling, and even crack initiation. This problem should be solved in ship production. In this study, cold bending experiments and finite element simulations were performed to analyze the deformation characteristics of curved frames with cutouts. A fabrication method is proposed to control the deformation in the cutouts during the bending process. In this method, the block cut out during the first step is filled in the hole and afterward the frame is bent. The results show that this method can control well the deformation localized around the hole during the bending process. It offers an important guidance for cold bending steel frames in ship production.

This content is only available via PDF.
You can access this article if you purchase or spend a download.