This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30403, “Sand Production Management While Increasing Oil Production of a Gravel-Packed Well Equipped With Rate-Controlled-Production Autonomous Inflow-Control Devices in a Thin Heavy-Oil Reservoir Offshore China,” by Shuquan Xiong, Fan Li, and Congda Wei, CNOOC, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2–6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission.

A 2018 infill development campaign for a horizontal well offshore China targeted improved production through the installation of autonomous inflow-control devices (AICDs). However, because the well requires gravel packing to manage the sand, the integration of AICDs and the gravel pack was an issue. An integrated work flow was followed to deliver the AICD application successfully in an offshore heavy-oil reservoir with major uncertainties in remaining oil thickness and water/oil contacts. AICD completions ensured balanced contribution from all reservoir sections and limited water production significantly while the gravel pack kept the valves safe from the effects of sand.

Field Description

The field is a low-amplitude fault anticline oil field developed on the basement uplift. The structure is relatively gentle (Fig. 1). The reservoir lithology is mainly feldspathic quartz sandstone, with an average porosity of 22%, an average permeability of 397 md, a reservoir pressure coefficient of 1, an oil density of 0.92 g/cm3, and crude oil viscosity of 150 cp.

The current methodology for gravel packing with ICDs/AICDs in the well uses a multiple alpha-wave technique whereby at least one conventional standalone screen joint is deployed at the toe of the well to provide a return path during the buildup of the alpha wave. The flow rate is reduced progressively to maximize the dune weight until screenout is observed. Once the gravel-packing operation is complete, the standalone-screen section at the toe is isolated before the well is placed on production. This technique does not allow a complete pack to be achieved and will allow more gravel to build up around the zonal isolation packers. This methodology is most applicable in unconsolidated sands with high net-to-gross reservoirs where borehole collapse will occur early in well life.

One technique to provide sufficient flow path through the screen assembly is to integrate sliding sleeves into each screen joint. However, in long lateral wellbores, this may be prohibitively expensive and requires multiple manual manipulations as the wash pipe is retrieved.

The use of a temporary bypass valve is recommended to enable standard gravel-packing operations to be performed with ICDs without significant additional cost, complexity, or compromise. The dissolvable material is used with a valve located within the ICD/AICD housing to provide a high-flow-area path from the annulus to the tubing during completion operations.

This content is only available via PDF.
You can access this article if you purchase or spend a download.