This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202996, “An Efficient Treatment Technique for Remediation of Phase-Trapping Damage in Tight Carbonate Gas Reservoirs,” by Rasoul Nazari Moghaddam, SPE, Marcel Van Doorn, and Auribel Dos Santos, SPE, Nouryon, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed.

Aqueous- and hydrocarbon-phase trapping are among the few formation-damage mechanisms capable of significant reduction in effective permeability (sometimes near 100%). In this study, a new chemical treatment is proposed for efficient remediation of water- or hydrocarbon-phase-trapping damage in low-permeability porous media. The method proposed here is cost-effective and experimentally proved to be efficient and long-lasting. Such a chemical treatment is recommended to alleviate gas flow in tight gas with aqueous-trapping-damaged zones or in gas condensate reservoirs with condensate-banking challenges.

Introduction

Remediation techniques for existing aqueous- or hydrocarbon-phase-trapping damage can be categorized into two approaches: bypassing the damaged region by direct penetration techniques and trapping-phase removal. In the former category, the damaged zone is bypassed by creation of high-conductance flow paths through hydraulic fracturing or acidizing. However, for tight and ultratight formations, conventional acidizing may not be feasible (mostly because of injectivity difficulties). In the second category, direct removal and indirect removal have been used, but usually are seen as short-term solutions.

The fluid used in the proposed treatment is comprised of a nonacidic chelating agent. The treatment fluid can be injected safely into the damaged region, while a slow reaction rate allows it to penetrate deep into the formation. In the proposed treatment, the mechanism is the permanent enlargement of pore throats where the nonwetting phase has the most restriction (to overcome the capillary forces) to pass through. In fact, phase trapping or capillary trapping occurs inside the pore structure when viscous forces are not strong enough to overcome the capillary pressure.

The experimental setup and method are detailed in the complete paper.

Results and Discussion

Treatment of Outcrop Samples: Lueder Carbonate. The performance of the proposed treatment fluid initially was investigated on two outcrop core samples from the Lueder carbonate formation. The first treatment was conducted on the Le1 core sample with an absolute permeability of 1.46 md. To establish trapped water in the core, 10 pore volumes (PV) of 5 wt% potassium chloride brine were injected followed by nitrogen (N2) gas displacement. Then, to achieve irreducible water saturation, N2 was injected at a rate of 2 cm3/min for at least 100 PVs until no further water was produced.

Next, the effective gas permeability was measured while N2 was injected at approximately 0.2 cm3/min. The effective gas permeability was obtained as 0.042 md. The trapped water saturation was also calculated (from the core weight) as 77.7%. After all pretreatment measurements, the core was loaded into the core holder for the treatment. The treatment injections with preflush and post-flush were performed at 130°C. In this test, 0.5 PV of treatment fluid was injected.

This content is only available via PDF.
You can access this article if you purchase or spend a download.