Summary
In Alberta and British Columbia, a huge amount of tight gas is trapped inrelatively low-permeability rock formations. Physical fracturing of theseformations could enhance the overall formation permeability and thus improvetight gas extraction. One of the outstanding issues in rock fracturing is todetermine the magnitude of applied effective stress. The generaleffective-stress law is defined as seff =sc - asp, where sc andsp are total confining stress and fluid pore pressure,respectively. Each physical quantity of rock responds to total stress and porepressure in a different way, and thus each quantity has its own unique Biot'seffective-stress coefficient. The main objective of this study is toexperimentally determine the Biot's coefficient for permeability of Nikanassinsandstone. A series of permeability measurements was conducted on Nikanassinsandstone core samples from the Lick Creek region in British Columbia undervarious combinations of confining stress and pore pressure. In addition,permeability values were measured both along and across bedding planes toinvestigate any anisotropy in the Biot's coefficient.