A 2-D numerical study was carried out, using a fully coupled rock deformation and fluid flow hydraulic fracturing model, on fracture network formation by advancing, widening and interconnecting discrete natural fractures in a low-permeability rock, some of which are small enough to be considered as a flaw that acts as a fracture seed. The model also includes fractures connecting into one another to form a single hydraulic fracture. In contrast to previous fracture network models, fracture extension and fluid flow behavior, frictional slip, and fracture interaction are all explicitly addressed in this model. Incompressible Newtonian fluid is injected at a constant total rate into fractures to study viscous fluid effects on the network formation. The algorithm for flow division and coalescence is validated through some examples.

Numerical results show that the incremental crack propagation that connects isolated natural fracture sets depends on the current stress state and the fracture arrangement. The newly created connecting fracture segments increase local conductivity since they are oriented along a path that is easier to open when pressurized by fluid and provide a new path for fluid flow. However the hydraulic fracture growth process is retarded by some of the resulting geometric changes such as intersections and offsets, and the growth-induced sliding that can impose a barrier to further fracture growth and fluid flow into parts of the network. Such barriers may eventually result in a fracture branch initiating and growing that results in a relatively shorter and more conductive path through a fracture network zone.

You can access this article if you purchase or spend a download.