ABSTRACT

The Extended Finite Element Method (XFEM) approach is applied to the coupled problem of fluid flow, solid deformation, and fracture propagation. The XFEM model description of hydraulic fracture propagation is part of a joint project in which the developed numerical model will be verified against large-scale laboratory experiments. XFEM forms an important basis towards future combination with heat and mass transport simulators and extension to more complex fracture systems. The crack is described implicitly using three level-sets to evaluate enrichment functions. Additionally, an explicit crack representation is used to up-date the crack during propagation. The level-set functions are computed exactly from the explicit representation. This explicit/implicit representation is applied to a fluid-filled crack in an impermeable, elastic solid and compared to the early-time solution of a plane-strain hydraulic fracture problem with a fluid lag.

This content is only available via PDF.
You can access this article if you purchase or spend a download.