We investigated the problem of a hydraulic fracture propagation through a weakly cohesive frictional discontinuity for different conditions of fracture toughness, in situ stresses, fracture intersection angle, injection parameters and permeability of the pre-existing fracture. The parametric sensitivity of the fracture interaction process, in terms of crossing versus arresting of the hydraulic fracture at the discontinuity, was performed using numerical simulations through an extensive parameter space representative of hydraulic fracturing field conditions. The effect of the pre-existing fracture permeability on the crossing behavior was analyzed using a simple analytical model. We showed that the injection rate and viscosity of fracturing fluid are the key parameters controlling the crossing/non-crossing interaction behavior, in addition to already known fracture interaction angle and in-situ stress parameters. We have also found that the pre-existing fracture hydraulic aperture, when as large as that of the hydraulic fracture aperture, has significant influence on the interaction and may more likely cause the hydraulic fracture to arrest.

You can access this article if you purchase or spend a download.