A hybrid finite-discrete element method is introduced to simulate dynamic fracture of rock and resultant fragment arching caused by rock blast. Three typical examples, i.e. blast in a rock mass with a single borehole and a free surface, simultaneous blast, and consecutive blast with various delay times, are modelled and the obtained stress wave propagation, fracture process and resultant fragment movement are compared with those well documented in literatures. It is found that the hybrid finite-discrete element method reproduces the dynamic fracture of rock in rock blast from the stress wave propagation to the formations of crushed zone and cracked zone around the boreholes, the propagation of long radial cracks resulting in rock fracture, the casting of resultant fragments into air, and the fragment arching. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool for the study on rock blast and a more advanced numerical method compared with the finite element method or discrete element method in terms of modelling dynamic fracture of rock.
Skip Nav Destination
ISRM International Symposium - 8th Asian Rock Mechanics Symposium
October 14–16, 2014
Sapporo, Japan
ISBN:
978-4-907430-03-0
Hybrid Finite-Discrete Element Modelling of Dynamic Fracture of Rock and Resultant Fragment Arching by Rock Blast
Paper presented at the ISRM International Symposium - 8th Asian Rock Mechanics Symposium, Sapporo, Japan, October 2014.
Paper Number:
ISRM-ARMS8-2014-081
Published:
October 14 2014
Citation
An, H. M., and H. Y. Liu. "Hybrid Finite-Discrete Element Modelling of Dynamic Fracture of Rock and Resultant Fragment Arching by Rock Blast." Paper presented at the ISRM International Symposium - 8th Asian Rock Mechanics Symposium, Sapporo, Japan, October 2014.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
4
Views
Advertisement
Suggested Reading
Advertisement