With the development of new oil formations and with the advent of new directions in the global energy sector, new requirements for materials for well construction appear. With the close attention to environmental footprint and unique properties, one of the promising materials for well cementing is geopolymers. Being a relatively new material, they are characterized by low carbon footprint, high acid resistance and attractive mechanical properties. This article is aimed at developing new geopolymer slurries for the oil industry, their characterization and field implementation analysis.

With the ultimate goal of developing a methodology for the analysis of raw materials and designing the geopolymer slurries, studies were carried out on various raw materials, including different types of fly ash. Based on the data obtained and rapid screening methods, an approach was developed to formulate a geopolymer composition recipe. Since not all cement additives directly work in geopolymers, special attention was paid to control the thickening time and fluid loss. The methods of XRD, XRF, ICP-MS, density, particle size distribution measurements as well as API methods of cement testing were used to understand the composition and structure of the materials obtained, their properties and design limitations. A special approach was applied to study the acid resistance of the materials obtained and to compare with conventional cements and slags.

Using one of the most common sources of aluminosilicate, fly ash, formulations with a density of 13.5 – 16.5 lbm/galUS were tested. A sensitivity analysis showed that the type of activator and its composition play a critical role both in the mechanical properties of the final product and in the solidification time and rheological properties of the product. The use of several samples of fly ash, significantly different in composition, made it possible to formulate the basic rules for the design of geopolymers for the oil industry. An analysis was also carried out on 10 different agents for filtration and 7 moderators to find a working formulation for the temperature range up to 100°C. The samples were systematically examined for changes in composition, strength, and acid resistance was previously measured.

Despite the emergence of examples of the use of geopolymers in the construction industry and examples of laboratory testing of geopolymers for the oil industry, to the best of our knowledge, there has been no evidence of pumping geopolymers into a well. Our work is an attempt to develop an adaptation of the construction industry knowledge to the unique high pressure, high temperature conditions of the oil and gas industry. The ambitions of this work go far beyond the laboratory tests and involve yard test experiments.

You can access this article if you purchase or spend a download.