Latest technological developments and applications made optimal control methods usage in optimal well placement in intelligent fields practical and beneficial to increase the production. Effective usage of these methods strongly depends on the detailed evaluation of the economic view and performance in reservoirs that have high uncertainty, particularly. There are several methods of optimization of well placement ranging from classical reservoir engineering to derivative-free and hybrid methods.

TNO's Olympus model used globally as a benchmark model in ISAAP-2 Challenge in used. Geological modeling software is coupled with the commercial full-physics reservoir simulator as well as the optimization software in order to produce different geological realizations to represent the geological uncertainty and run the simulation model with differing inputs of optimization and uncertainty in a loop. Results are outlined in detail in a comparative way including comparison to the previous study to illustrate the challenges and benefits of smart wells and optimization of placement of them in intelligent fields.

Results indicate that classical reservoir engineering principles still prove useful in the beginning of the optimization process. Then, derivative-free and hybrid methods introduce significant improvement on economics. There are certain challenges in CPU requirements however the state-of-the-art facilities provided significant reduction in runtimes along with the help of the hybrid methods where proxies are built and used for faster runtimes. Despite higher initial capital expenses, smart wells provide significant advantages in recovery and economics compared to that of the conventional wells where these is less control on the production/injection at the layer level. Literature lacks a comprehensive study that takes into account the optimization of well placement in smart fields focusing on smart wells and the all major available methods for optimization. This study closes that gap providing a strong reference building on top of the previous study extending it to intelligent fields which are becoming very common and useful in oil and gas industry in conventional and unconventional applications.

This content is only available via PDF.
You can access this article if you purchase or spend a download.