Abstract

Phase change, a major factor that restricts the development of gas hydrate, is likely to cause blockage in well completion section (sieve section – wellbore lifting section), thus resulting in the engineering losses. In view of the defects in the previous studies on the confluence mechanism of completion section of gas hydrate pressure drop method mining under openhole completion technology, the flow of gas hydrate in the well completion section was simplified as the Main-Branch pipe confluence model in this paper. Firstly, a physical model was established. On the basis of the energy conservation law and the Peng-Robinson equation, the temperature and pressure coupling model was also derived. Then, the Fluent software was used to simulate the temperature gradient and pressure gradient changes in the Main-Branch model. The gas hydrate phase diagram and P-T environment under different velocity were obtained. Finally, the contrast analysis between theoretical model and numerical simulation was carried out and the established model was verified. Through the study of this paper, it is possible to prevent blockage of the well completion section by means of depressurization, which can provide theoretical guidance for the control of pressure drop when gas hydrate is extracted by depressurization. It is important for the exploitation and continuous production of gas hydrate in the later stage.

This content is only available via PDF.
You can access this article if you purchase or spend a download.