_
This paper describes a new high-order composite numerical model for simulating moored floating offshore bodies. We focus on a floating offshore wind turbine and its static equilibrium and free decay. The composite scheme models linear to weakly nonlinear motions in the time domain by solving the Cummins equations. Mooring forces are acquired from a discontinuous Galerkin finite element solver. Linear hydrodynamic coefficients are computed by solving a pseudo-impulsive radiation problem in three dimensions using a spectral element method. Numerical simulations of a moored model-scale floating offshore wind turbine were performed and compared with experimental measurements for validation, ultimately showing a fair agreement.
This content is only available via PDF.
Copyright 2024, The International Society of Offshore and Polar Engineers
You can access this article if you purchase or spend a download.