Summary

A potential application of optical fiber technologies in the well control domain is to detect the presence of gas and to unfold the gas dynamics inside marine risers (gas-in-riser). Detecting and monitoring gas-in-riser has become more relevant now when considering the application of managed pressure drilling operations in deep and ultradeep waters that may allow for a controlled amount of gas inside the riser. This application of distributed fiber-optic sensing (DFOS) is currently being evaluated at Louisiana State University (LSU) as part of a gas-in-riser research project granted by the National Academies of Sciences, the Gulf Research Program (GRP).

Thus, the main objective of this paper is to present and discuss the use of DFOS and downhole pressure sensors to detect and track the gas position inside a full-scale test well during experimental runs conducted at LSU. The other objectives of this work are to show experimental findings of gas migration in the closed test well and to present the adequacy of a mathematical model experimentally validated to match the data obtained in the experimental trials.

As a part of this research effort, an existing test well at the LSU Petroleum Engineering Research and Technology Transfer Laboratory (PERTT Lab) was recompleted and instrumented with fiber-optic sensors to continuously collect data along the wellbore and with four pressure and temperature downhole gauges to record those parameters at four discrete depths. A 2⅞-in. tubing string, with its lower end at a depth of 5,026 ft, and a chemical line to inject nitrogen at the bottom of the hole were also installed in the well.

Seven experimental runs were performed in this full-scale apparatus using fresh water and nitrogen to calibrate the installed pieces of equipment, to train the crew of researchers to run the tests, to check experimental repeatability, and to obtain experimental results under very controlled conditions because water and nitrogen have well-defined and constant properties. In five runs, the injected gas was circulated out of the well, whereas in two others, the gas was left inside the closed test well to migrate without circulation. This paper presents and discusses the results of four selected runs.

The experimental runs showed that fiber-optic information can be used to detect and track the gas position and consequently its velocity inside the marine riser. The fiber-optic data presented a very good agreement with those measured by the four downhole pressure gauges, particularly the gas velocity. The gas migration experiments produced very interesting results. With respect to the mathematical model based on the unsteady-state flow of a two-phase mixture, the simulated results produced a remarkable agreement with the fiber-optic, surface acquisition system and the downhole pressure sensors data gathered from the experimental runs.

You can access this article if you purchase or spend a download.