Wells are sometimes deformed due to geomechanical shear slip, which occurs on a localized slip surface, such as a bedding plane, fault, or natural fracture. This can occur in the overburden above a conventional reservoir (during production) or within an unconventional reservoir (during completion operations). Shear slip will usually deform the casing into a recognizable shape, with lateral offset and two opposite-trending bends, and ovalized cross sections. Multifinger casing caliper tools have a recognizable response to this shape and are especially useful for diagnosing well shear. Certain other tools can also provide evidence for shear deformation. Shear deformations above a depleting, compacting reservoir are usually due to slip on bedding planes. They usually occur at multiple depths and are driven by overburden bending in response to reservoir differential compaction. Shear deformations in unconventional reservoirs, for the examples studied, have been found to be caused by slip on bedding planes and natural fractures. In both cases, models, field data, and physical reasoning suggest that slip occurs primarily due to fluid pressurization of the interface. In the case of bedding plane slip, fracturing pressure greater than the vertical stress (in regions where the vertical stress is the intermediate stress) could lead to propagation of a horizontal fracture, which then slips in shear.

You can access this article if you purchase or spend a download.