Summary

Modern multifractured shale-gas/oil wells are horizontal wells completed with simultaneous-fracturing, zipper-fracturing, and (in particular) modified-zipper-fracturing techniques. An analytical model was developed in this study for predicting the long-term productivity of these wells under conditions of pseudosteady-state (PSSS) flow, considering the cross-bilinear flow in the rock matrix and hydraulic fractures. Performance of the model was verified with the well-productivity data obtained from a shale-gas well and a shale-oil well. Sensitivity analyses were performed to identify key parameters of hydraulic fracturing affecting well productivity. The conducted field case studies show that the analytical model overpredicts shale-gas-well productivity by 2.3% and underpredicts shale-oil productivity by 7.4%. A sensitivity analysis with the model indicates that well productivity increases with reduced fracture spacing, increased fracture length, and increased fracture width, but not proportionally. Whenever operational restrictions permit, more fractures with high density should be created in the hydraulic-fracturing process to maximize well productivity. The benefit of increasing fracture width should diminish as the fracture width becomes large. Increasing fracture length by pumping more fracturing fluid can increase well-production rate nearly proportionally. Therefore, it is desirable to create long fractures by pumping high volumes of fracturing fluid in the hydraulic-fracturing process.

You can access this article if you purchase or spend a download.