Some of the first high-pressure/high-temperature (HP/HT) development wells from Elgin and Franklin have been exposed to sustained casing pressures in their “A” annulus, threatening the integrity of the wells. The sustained pressure in the annulus was attributed to ingress through the production casing of fluids from the overburden chalk formations of the Late Cretaceous. The mechanism triggering the ingress into the “A” annulus was uncertain until access to the production casing was achieved. A recent campaign to abandon development wells of Elgin and Franklin that had sustained “A”-annulus pressure brings new evidence on the mechanism causing the ingress. Temperature surveys have been acquired in the production tubing to identify the fluid-entry points in the production casing. Multifinger calipers have been run in the production casing, revealing several shear-deformation features. These deformations are localized along various interfaces, and are attributed to the stress reorganization associated with the strong reservoir depletion. A detailed analysis of the surveys shows that fluid ingress is occurring at distorted casing connections, if located close to weak interfaces along which shear slip occurs. The shear deformation is suspected to cause a loss of the sealing capacity of the connection, leading to gas ingress into the “A” annulus. This conclusion emphasizes the need to consider any potential for localized shear deformations in designing casing for HP/HT wells.

You do not currently have access to this content.