This paper discusses Synthetic Coal Cycle Technology™ (synCCT™), a novel, patent pending, energy conversion and storage technology that uses carbon dioxide (CO2) to make grid-scale renewable energy dispatchable. synCCT uses renewable energy to dissociate CO2 into carbon, a renewable fuel named Synthetic Coal™ or synC™, and oxygen. synC is oxidized to generate electricity and heat on demand, producing CO2, which is captured and reused in the process.

Both synC and CO2 are feasibly and economically stored for long periods and/or transported long distances by conventional technologies. The synCCT process is carbon neutral and sustainable. In addition, synCCT has a number of advantages over competitive technologies, including:

  • No greenhouse gas (GHG) emissions

  • Simplified integration of grid-scale renewable electricity

  • Virtual transmission of renewable electricity without wires

  • Simplicity

  • No pollution or waste products

  • Minimal water use

  • Relative safety

  • Low toxicity

  • Minimal infrastructure development required

  • Potential use and repurposing of existing infrastructure

This paper discusses the rationale for synCCT, how it works and how it compares with competitive technologies for producing renewable fuels from CO2.


The embodiments of Synthetic Coal Cycle Technology™ (synCCT™) discussed in this paper simultaneously address two major issues for the production of electricity: carbon dioxide (CO2) emissions and the limited availability of solar and wind energy to reduce these emissions (Zietlow 2014). Although renewable energy sources, such as wind and solar power, reduce CO2 emissions by replacing fossil fuels, this reduction is limited by their availability. Because most renewable energy sources are either intermittent, geographically fixed or both, they are often not available when and where needed. Although intermittency can be mitigated to some extent by using peaking generation or conventional energy storage, both have significant limitations. Peaking generation emits CO2 and most commercially available energy storage only works over short time frames. Both require capital investment beyond that for renewable energy generation, often including new, expensive electrical transmission lines to transport the electricity they provide.

synCCT converts renewable energy to a fuel, Synthetic Coal™ (synC™), that stores renewable energy indefinitely and can be transported significant distances by conventional transportation, thereby, solving the problems of intermittency and fixed location without the need for new electrical transmission lines. Although synCCT requires additional capital investment beyond that for renewable energy generation, the added value of greater location and time flexibility, and the avoided cost of new electrical transmission offsets its cost relative to peaking generation and conventional energy storage.

This content is only available via PDF.
You can access this article if you purchase or spend a download.