Bonded-particle models (BPMs) provide a synthetic material consisting of a packed assembly of rigid grains joined by deformable and breakable cement at grain-grain contacts, and whose mechanical behavior is simulated by the distinct-element method. Contact- and parallel-bonded PFC2D and PFC3D models of circular and spherical grains suffer from the limitation that if one matches the unconfined-compressive strength of a typical compact rock, then the direct-tension strength of the model will be too large. This limitation has been overcome by creation of the flat joint contact model. This contact model provides the macroscopic behavior of a finite-size, linear elastic, and either bonded or frictional interface that may sustain partial damage such that the flat-jointed material can mimic the microstructure of angular, interlocked grains. Partial interface damage with continued moment-resisting ability (to resist grain rotation) is a microstructural feature necessary to obtain the relatively large compressive- to-tensile strength ratio of most compact rocks. The ability to match this ratio is demonstrated by creating a 3D flat-jointed material for Lac du Bonnet granite that matches the elastic modulus, direct-tension strength, and compressive strengths up to 6-MPa confinement.
Skip Nav Destination
A Flat-Jointed Bonded-Particle Model for Rock
D. O. Potyondy
D. O. Potyondy
Itasca Consulting Group, Inc.
Search for other works by this author on:
Paper presented at the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, June 2018.
Paper Number:
ARMA-2018-1208
Published:
June 17 2018
Citation
Potyondy, D. O. "A Flat-Jointed Bonded-Particle Model for Rock." Paper presented at the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, June 2018.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
54
Views
Advertisement
Suggested Reading
Advertisement