Realistic fracture simulations in rock as a heterogeneous brittle material with significant inherent randomness require the use of models that incorporate its inhomogeneities and statistical variability. The high dependence of their fracture progress on microstructural defects results in wide scatter in their ultimate strength and the so-called size effect. This paper proposes an approach based on s (SVEs) to characterize rock fracture strength at the mesoscale. The use of SVEs ensures that the material randomness is maintained upon averaging of microscale features. Because the fracture strength varies not just spatially, but also by the angle of loading, this work includes angular variability to properly model a heterogeneous rock domain. Two different microcrack distributions, one angularly uniform and one angularly biased towards a specific angle, are used to show that implementing angle into the random field provides the most realistic fracture simulation. An adaptive n (aSDG) finite element method is used to perform the dynamic fracture simulations.

This content is only available via PDF.
You can access this article if you purchase or spend a download.