Macroscopic behaviour and properties of rocks are dependent on their microstructure. In particular, the grain-grain interfaces and pre-existing cracks are of great importance as they act as flaws in the rock matrix and, based on their distribution, length, and orientation, can induce significant and variant effects on the macroscopic properties of the rock. Another level of complexity is the mechanism that forms pre-existing cracks which can result in smooth or rough surfaces along the grain boundary. In this study, we used the grain-based modelling (GBM) approach within the combined finite-discrete element method (FDEM) to demonstrate the importance of the friction of grain-grain interfaces on the macroscopic rock behavior. This approach discretizes grains making intergranular and intragranular cracks easily traceable. The results of the simulation indicated that for rough fractures, the effect of fracture intensity was minor and only affected the uniaxial compressive strength. For smoother fractures, the effect was more predominant on both stress-strain curves and macroscopic strength properties. As frictional values and fracture intensity decreased, the sample exhibited yielding on loading. These findings indicate the importance of understanding the frictional behavior along pre-existing cracks and suggests that it should be extended into macro-scale modelling.
Skip Nav Destination
52nd U.S. Rock Mechanics/Geomechanics Symposium
June 17–20, 2018
Seattle, Washington
Investigating Frictional Behavior of Micro-Cracks Using Grain Based Modelling in the Combined Finite-Discrete Element Method (FDEM)
G. Grasselli
G. Grasselli
University of Toronto
Search for other works by this author on:
Paper presented at the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, June 2018.
Paper Number:
ARMA-2018-878
Published:
June 17 2018
Citation
Abdelaziz, A., and G. Grasselli. "Investigating Frictional Behavior of Micro-Cracks Using Grain Based Modelling in the Combined Finite-Discrete Element Method (FDEM)." Paper presented at the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, June 2018.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
10
Views
Advertisement
Advertisement