We conduct combined numerical and mathematical analysis to investigate the variability of local stresses in heterogeneous fractured rocks subjected to different far-field stress loading conditions. A realistic fracture network is constructed based on a sandstone outcrop mapped at the Hornelen Basin in Norway. The inhomogeneous nature of rock is modelled using a Weibull distribution of Young's modulus characterised by a homogeneity index m. As m decreases, the rock material becomes less homogeneous. The local stress field in the fractured rock under far-field stress loading is derived from a hybrid finite-discrete element model, and the stress variability is analysed using a novel tensor-based formalism that faithfully honours the tensorial nature of stress data. The local stress perturbation is quantified using the Euclidean distance of the local stress tensor to the mean stress tensor, while the overall stress dispersion is measured using the effective variance of the entire stress tensor field. We show that local stress field is significantly perturbed when the far-field stresses are imposed with a high stress ratio and at a critical direction in favour of sliding along pre-existing fractures.
Skip Nav Destination
52nd U.S. Rock Mechanics/Geomechanics Symposium
June 17–20, 2018
Seattle, Washington
Citation
Lei, Q., and K. Gao. "Effects of Far-Field Stress State on Local Stress Perturbation in Heterogeneous Fractured Rocks." Paper presented at the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington, June 2018.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
16
Views
Advertisement
Suggested Reading
Advertisement