A consequent slope comprises weak planes in the same dip direction along a slope face. This study investigated scale effects on the gravitational deformation of consequent slopes. A series of centrifuge model tests under simplified environmental conditions were performed. Particle image velocimetry was then adopted to evaluate the displacement distribution from the centrifuge model test results. Subsequently, the discrete element method (DEM) was used to execute simulations to provide detailed descriptions of the crack development and failure mechanisms associated with consequent slopes at different scales. The results of this study are summarized as follows. (1) The slopes exhibited similar deformation patterns in the centrifuge model tests. As the gravitational force increased, the magnitude of slope deformation increased significantly. (2) A modified dimensional relationship of material parameters was proposed for DEM simulation. According to this relationship, the simulated deformation patterns were in strong agreement with the actual deformations at various slope scales. (3) According to the DEM simulations, for the slopes with the same slope and weak plane angles, more cracks and displacements were generated in the higher slopes, leading to a greater sliding volume.

This content is only available via PDF.
You can access this article if you purchase or spend a download.