Presented is a new spherocylindrical microplane constitutive model that can capture the inelastic fracturing behavior of orthotropic materials, and particularly the shale. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. This new model can reproduce all the five independent elastic constants of transversely isotropic shales, which are all positive if the elastic in-to-out-of plane moduli ratio is<3.75 (this applies to all shales). Vice versa, from these constants, one can easily calculate all the microplane elastic moduli. Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modelled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, reaching a minimum at 30° to 60°. Finally, comparisons with extensive test data for shale validate the model.
Skip Nav Destination
51st U.S. Rock Mechanics/Geomechanics Symposium
June 25–28, 2017
San Francisco, California, USA
Constitutive Model for Shale
Z. P. Bazant
Z. P. Bazant
Northwestern University
Search for other works by this author on:
Paper presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA, June 2017.
Paper Number:
ARMA-2017-1050
Published:
June 25 2017
Citation
Chau, V. T., Li, C., and Z. P. Bazant. "Constitutive Model for Shale." Paper presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA, June 2017.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
12
Views
Advertisement
Suggested Reading
Advertisement