ABSTRACT:

The coupled fluid flow and geomechanical simulator TOUGH-FLAC was employed to study the mechanisms of depletion-induced reservoir compaction and its impact on hydrocarbon gas production. For consideration of compaction-drive in the sequential coupling between fluid flow and geomechanics, we developed and applied a new alternative approach of linking volumetric strain to the fluid mass balance through a correction of rock compressibility in the fluid flow simulator. Using this approach, we conducted model simulations for understanding the impact of porosity change on deformation and gas production, including sensitivity studies with regard to material properties and operation parameters for the optimization of gas production. The model simulations showed that the reservoir compaction can increase or decrease the gas recovery depending on the specific porosity and the permeability changes in the reservoir. This result shows that the interaction between fluid flow and geomechanics should be considered for optimal reservoir management and TOUGH-FLAC with the implemented coupling approach can be an effective tool for such analysis.

1. INTRODUCTION
This content is only available via PDF.
You can access this article if you purchase or spend a download.