We present a 3D-DDA formulation that uses an explicit time integration procedure and an efficient contact detection algorithm optimized to minimize the computational effort. The advantages of the explicit formulation are that the global stiffness matrix does not need to be assembled and the linear equations do not need to be solved by matrix inversion. Consequently, the computational effort and memory requirement can be reduced considerably, which is important for efficient solution of large 3D problems. In addition, the computational efficiency is increased by eliminating unnecessary contact computations using a grid based nearest neighbor search. The grid divides space into a number of cells of equal size and each object is then associated with the cells it overlaps. As only objects overlapping a common cell can possibly be in contact, in-depth tests are only performed on objects found sharing cells with the block tested for collision. The contacts between the blocks are detected by using Fast Common- Plane (FCP) approach. The halfedge (HE) data structure approach is used to handle the navigation into the topological information associated with polyherdral objects (vertices, edges, faces). The halfedge data structure allows for quick traversal between faces, edges, and vertices due to the explicitly linked structure of the network. Examples are provided which demonstrate the capabilities of new algorithm and the size of problem that can be analyzed.
Skip Nav Destination
47th U.S. Rock Mechanics/Geomechanics Symposium
June 23–26, 2013
San Francisco, California
ISBN:
978-0-9894844-0-4
Explicit Three Dimensional Discontinuous Deformation Analysis for Blocky System
Roozbeh Geraili Mikola;
Roozbeh Geraili Mikola
Jacobs Associates and UC Berkeley
Search for other works by this author on:
Paper presented at the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013.
Paper Number:
ARMA-2013-416
Published:
June 23 2013
Citation
Mikola, Roozbeh Geraili, and Nicholas Sitar. "Explicit Three Dimensional Discontinuous Deformation Analysis for Blocky System" Paper presented at the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
2
Views
Advertisement
Suggested Reading
Advertisement