This study will provide insight to evaluate the potential risks involved with the alteration of in situ effective stresses around the borehole and the risks associated with the reservoir pressure decline. We studied how years of production and reservoir depletion may cause future major geological hazards in the area of study. Wellbore instability and stress distribution analysis around a vertical borehole is also carried out in the Bakken Formation including elastic anisotropy of the layer. We calculated the magnitude of maximum principal horizontal stress as a major input parameter through a new method. This study shows the importance of geomechanical modeling in the petroleum industry with the recent growth of drilling plans in unconventional reservoirs as a novel source of energy where many of them are fine layered, anisotropic and naturally fractured. For this study, dynamic elastic properties were collected through the Bakken Formation using advanced sonic logs. The interpretation of these data is significant in estimating the rock strength, pore pressure, and in situ stresses. The measured dynamic elastic moduli were converted to static ones and were used as input into poroelasticity equations to calculate the magnitude of the horizontal principal stresses. The direction of the maximum principal horizontal stress was determined to be N70E by analyzing fast shear azimuth (FSA) using major fractures which have caused more than 20% shear anisotropy. Finally stress analysis and wellbore stability were performed and compared in the current state of the reservoir stress state and after 5 years of production. Stress polygons are created in the reservoir (horizontal section of the well) to predict future natural hazards. The results confirm the possible occurrence of normal faulting in the region and existence of borehole breakouts after years of production.
Skip Nav Destination
47th U.S. Rock Mechanics/Geomechanics Symposium
June 23–26, 2013
San Francisco, California
ISBN:
978-0-9894844-0-4
Stress Analysis and Wellbore Stability in Unconventional Reservoirs
Mehdi Ostadhassan;
Mehdi Ostadhassan
University of North Dakota
Search for other works by this author on:
Bailey Bubach
Bailey Bubach
University of North Dakota
Search for other works by this author on:
Paper presented at the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013.
Paper Number:
ARMA-2013-150
Published:
June 23 2013
Citation
Ostadhassan, Mehdi, Benson, Steve, Zamiran, Siavash, and Bailey Bubach. "Stress Analysis and Wellbore Stability in Unconventional Reservoirs." Paper presented at the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013.
Download citation file:
Sign in
Don't already have an account? Register
Personal Account
You could not be signed in. Please check your username and password and try again.
Could not validate captcha. Please try again.
Pay-Per-View Access
$20.00
Advertisement
14
Views
Advertisement
Suggested Reading
Advertisement