High resolution neutron (~13.7 µm/voxel) and X-ray (~11.2 µm/voxel) tomography imaging of partially water saturated sand specimens was performed at Helmholtz Zentrum Berlin (HZB). Two different sand grain morphologies (round and angular) were used. Partially saturated silica sand is a three-phase material consisting of solid (Silica: SiO2), gas (air), and liquid (water) phases. Due to different attenuation characteristics of neutrons and X-rays to these three phases of interest, the neutron and X-ray images presented in this paper provided unique and complementary information. While the water phase contrast is wellidentified with the cold neutron images without using a contrast agent, the detailed structure of the silica sand phase is much clearly shown in the X-ray images due to low attenuation of the air/water phases to X-rays. A detailed description of neutron and X-ray tomography for visualizing and quantifying microstructure of an assemblage of sand grains is provided in this paper. An automatic approach to register the dual modality image information in the same coordinate is also demonstrated, and a technique to match different resolutions from neutron and X-ray imaging techniques is addressed. Direct numerical simulation technique based on a realistic pore geometry obtained from X-ray tomography of a dry sand specimen is also demonstrated. Full morphology model was used to obtain simulated capillary water distributions and a capillary pressure – saturation curve for the dry sand specimen with complex initial void size distribution in three dimensions based on the measured tomography data.


Soil is considered as a three-phase material containing solid, gas and liquid phases. The interactions between the different phases are of a critical importance in understanding soil deformation behavior. An arrangement of the three phases can be very complex, and it is very difficult to quantify.

This content is only available via PDF.
You can access this article if you purchase or spend a download.