ABSTRACT

ABSTRACT: Energy production, deformation, and fluid transport in reservoirs are linked closely. Recent field, laboratory, and theoretical studies suggest that, under certain stress conditions, compaction of porous rocks may be accommodated by narrow zones of localized compressive deformation oriented perpendicular to the maximum compressive stress. Triaxial compression experiments were performed on Castlegate, an analogue reservoir sandstone, that included acoustic emission detection and location. Initially, acoustic emissions were focused in horizontal bands that initiated at the sample ends (perpendicular to the maximum compressive stress), but with continued loading progressed axially towards the center. This paper describes microscopy studies that were performed to elucidate the micromechanics of compaction during the experiments. The microscopy revealed that compaction of this weakly-cemented sandstone proceeded in two phases: an initial stage of porosity decrease accomplished by breakage of grain contacts and grain rotation, and a second stage of further reduction accommodated by intense grain breakage and rotation.

This content is only available via PDF.
You can access this article if you purchase or spend a download.